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LETTER TO THE EDITOR 

Applications of permutation group theory to Heisenberg 
spin-112 chain 

Zuiong Yu and Nian Lm 
CCAST (World Laboratory), Beijing, People’s Republic of China and Department of 
Physics, Torigji University. Shanghai 2ooo92, People’s Republic of China 

Received 17 March 1993 

Absh.aet. Making use of permutation group technique, the .eigenvalue problem of 
Heisenberg spin3 chains can be solved. Especially the ground state of the antifemmag- 
netic chains can be easily written. 

A large body of literature on the Heisenberg spin4 chain has now appeared, and has 
presented many techniques to solve its eigenvalue problems 111. In the present letter 
we develop another method which is completely based on the permutation group 
theory. This method possesses three main characteristics: 

(1) It is easy to 
that it is difficult in 

(2) It is easily 
utilized. 

write the ground state of the antiferromagnetic chain. We know 
the Bethe Ansatz method. 
translated into programs, and computer facilities can be well 

(3) It can be conveniently extended to the spin-1 chain and q-deformed chain, and 
so on. 

The Hamiltonian of this model is given by 
N- 1 

H = J 2 s h f  sh+l 

h = l  

Defining total spin operators So and Sc 
N N 

They generate SU(2) algebra and satisfy 

[H,  & l = O  [ H , S , ] = O .  

It is well known that (1) can be rewritten as 

h=1 
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(3) 

(4) 
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where pr(k= 1,2, . . . , N -  1) are the generators of the permutation group SN, which 
is related to s, . sk+, by 

Px'i (1 + % * % + I ) .  (5) 

To our knowledge, there is no further development for solving (4) with the help of the 
SN technique. 

According to the U(g) asnd SNgroup theory, the basis vectors can be expressed as 
P, 31 

I Y y ;  WF). (6)  

Here [f] = [f,,fi, . . . ,fJ, they,, fi, . . . , f, are g integers and a partition of N obeying 
fi >fi> . . . Zf, andf, +A+ . . . +fc= N.  We can introduce a graphical representation 
(Young diagram) of the partitions: a Young diagram consists of N boxes arranged 
withf, boxes in the first row, f2 boxes in the second row and so on. Such diagram labels 
an irreducible representation of the groups SN and U(g).  Yp represents a standard 
Young tableau (SYT). A SYT is an arrangement of the numbers 1 ,2 , .  . . , N in a 
Young diagram in which the numbers increase as we read from left to right in each 
row and as we read down in each column. And the r(r= 1,2, . . . , dim([fl) is an index 
of SYT which represents a possible filling of the numbers 1,2, . . . N in a [fl according 
to the above d e s .  For example, 

Wy represents a standard Weyl tableau (swr) which can be constructed by writing the 
g numbers m,, m,, . . . , m, in the Young diagram correspondong to the above Ifl. The 
filling rules are as follows: 

(1) The same m value may not appear in any single column, which means that the 
Young diagram can be characterized only by a partition with at most g rows. 
For example, in the case of SU(2), g=2,  then V ] = [ N - n , n ]  or [W.  

(2) The m values must in increasing order (based on a presumed order: first all the 
m,s. then m6, and so on) as we read from left to right in any row and from tov 
to'bottom in any column. For SU(2), m= 
Weyl tableau are 

and-J (or 4 and -&), thus the 

From (3) we h o w  that we can diagonalize the H in the set of basis vector (6) with 
a fixed Weyl tableau, i.e. the states with the same total spin S=(N-2n)/2 (same 
Young diagram) and different So values (different Weyl tableau) are degeneracy. 



Letter to the Editor L883 

Accordingly we can take a particular Weyl tableau in which all boxes of the first row 
are filled by , those in the second row by 4 , i.e. the so-called highest weight state 
of SU(2), 

According to the standard theory of S,, the non-vanishing matrix elements of the 

(1) the diagonal matrix elements are 

(2) the non-diagonal matrix elements of pk between two states 

transposition pk acting in the SYTS are as follows: 

(yYIl~tl YP) = 1/&,k+dr) (84 
and IySn) 

have a non-vanishing value only if the positions of k and k + 1 are interchanged in 
going from the tableau r to the tableaus, in which case 

The integer ~&,~+,(r) is the 'axial distance' of k and k + l  in the tableau r, and is 
defined as 

(y! I Pt  I y p )  = (1 - I/(&, k+ i(r))*)"2. 

dx.k+l(r)=col(k+ l)-col(k)-row(k+l) +row@) (9) 

(8b) 

where col(k) and row@) are the column and row numbers of the kth number in 
tableau r, respectively. 

Due to the limitation of the space, here we only discuss the cases n = 1 and n = 0. 
The aim is to show the main points of ow method. The general discussion will appear 
elsewhere. 

For n = 1 there are N - 1 different Young tableaux corresponding to a fixed Young 
diagram. So the basis vectors (6) become 

...................... 
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Notice that now the index r is equal to x - 1, the x is a number filling the box of the 

Using the standard technique of SN,  every state in (10) can be rewritten as 
second row in (10). 

all? f ... ? ?  & ) + ' 2 1 f ?  ... f ?)+" .+%I&  f ... t ? ? )  
where the I t & . . . T ), . . . , is a possible arrangement of the up and down spin 
in the same chain. The coefficients al,  U,, . . . , U, can be easily obtained by means of 
the standard technique of SN. 

Making use of (8) and (9) the matrix 

in the basis vectors (10) can be written as 
N - I  

-112 v312 
. f i l ? ,  -112.3 f i 1 3  

a 1 3  -113-4 . 

-1lN"- N' 
(A"' - l)lnlN' 

M(N) = 

whereN'=N-1, N"=N-2. It can be shown that 
(a) Trace (M(N)) = 0, 
(b) Making use of 

\ 

det(M(N))= (N-2)AN-zl(N-l)-( iV-2N)AN-31(N- 1)' N 2 3  

and 
Ah= -Ah-llk(k+ 1)- (k'- l)Ah-zlkz 
A o = l  A1 = - 1/2 

k=2,3,  . . . , ( N -  2) 

we obtain 
if N 2 2 ;  even integer numbers 
if N 2 3 ;  odd integer numbers. 

Let i(k,  N) (k= 1,2, . . . , N- 1) represent the eigenvalues of M(N), then 

(12) (" (-1)N-"Z det(M(N)) = 

N-I N - I  

W, N) = 0 I@, N) = WM(N)) .  (13) 
k = l  k=l 

Since 203s (knlN)(k= 1,2,. . . , N - 1 )  also satisfy the same relation as (13), we can 
write 

i(k, N) = 2 cos (knlN) k=1,2, .  . . ,N-1. (14) 
This means that the eigenvalues are 

' E ( ~ , N ) = ~ ~ { ( N - S ) + ~ C O ~ ( ~ I N ) }  , k = l , 2 , . .  . ,N-1. (15) 
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This result is'in agreement with [4,5] if A = I andp, p' = 0 in [4], which means that our 
method is reasonable. Notice that the physical implication of quantum number k here 
is very different from that in [4,5]. Our k is only the index of s m .  Another strong 
point of our method is that the states of the system may be written conveniently. For 
J<O and arbitrary N, the lowest state 1L.s.) is 

where 

2(r' - 2r)'" 
+4E(k= 1, N)IJ - N +5 ] r-1 C, = 

r=2,3, .  . . , N -  1 .  (16b) 
The parameter C, can be determined by a normalized procedure. For example 

(1) N =  4; So=S= 1; 'E(1,4) = 0.4571.J 

IL.~)=O27061Y\~'l; 1, 1)+0.59811Y53'r; 1, 1)+O.7543[fi3"; 1 , l )  

(2) N = 5 ;  So=S=3/2; 'E(1,5)=0.8090J 

IL.s.)=O.l6251Y~'l; 3/2, 3/2)+0.3973lYy1]; 312,312) 

+0.6029( YP]; 3/2,3/2) + 0.67251 Yi4']; 312,3/2) 

( 3 )  N=10; &=S=4;  E(1,10)=2.20111 

IL.s)=0.03061YrL1; 4, 4)+0.08481129"; 4,4) 

+ 0.1580) B9']; 4,4) + 0.2414) a'*]; 4,4) 

+0.32481fl9'I; 4, 4)+0.39771yb9'1; 4,4) 

+0.45031fi9'1;4,4)+0.47471Y~911;4,4) 

+0.4656)Y&'11; 4,4) 

For n=O, S= N/2  and the Young tableau is unique, =I"(. The 
eigenenergy and the lowest state, are, respectively 

"E(iV) =J(N- 1)/4 (17) 

' IL.s.)= I ; Nl2, N /2  (18) 

The general case (n#O,l) eigenenergies and eigenstates can also be given. 
Further discussions will be reported in later papers, especially the relations between 
the ground state 1g.s) and the Nee1 state in antiferromagnetic spin chains. 

This work was supported by the National Natural Science Foundation of China. The 
authors would like to thank our colleagues for helpful discussions. 
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